Data collection
Stoe four-circle diffractometer
ω scans
Absorption correction: none
8624 measured reflections
7611 independent reflections
6331 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.134$
$S=1.044$
7602 reflections
413 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0776 P)^{2}\right.$ $+1.955 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Ag} 1-\mathrm{O} 2$	2.386 (3)	C12-C1	1.769 (6)
$\mathrm{Agl}-\mathrm{Pl}$	2.4120 (12)	$\mathrm{Pl}-\mathrm{C} 26$	1.815 (3)
Ag1-P2	2.4401 (12)	Pl-C16	1.825 (3)
$\mathrm{Ag} 1-\mathrm{Ol}$	2.481 (3)	$\mathrm{Pl}-\mathrm{C} 36$	1.826 (4)
$\mathrm{N} 1-\mathrm{Ol}$	1.253 (4)	P2-C46	1.821 (4)
N1-O2	1.259 (4)	P2-C56	1.826 (3)
$\mathrm{Cll}-\mathrm{Cl}$	1.777 (6)	P2-C66	1.826 (4)
$\mathrm{O} 2-\mathrm{AgI}-\mathrm{Pl}$	118.35 (8)	N1-O2-Agl	99.6 (2)
O 2 - Ag 1 - P 2	109.99 (8)	$\mathrm{Cl} 2-\mathrm{Cl}-\mathrm{ClI}$	111.3 (3)
P1-Agl-P2	128.67 (4)	C26-P1-Ag1	117.64 (12)
$\mathrm{O} 2-\mathrm{Agl}-\mathrm{Ol}$	51.25 (10)	C16-Pl-Ag1	110.01 (12)
Pl - Agl - Ol	120.81 (8)	C36-Pl-Agl	111.74 (12)
$\mathrm{P} 2-\mathrm{Agl}-\mathrm{Ol}$	102.06 (8)	C46-P2-AgI	115.14(12)
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2$	114.1 (3)	C56-P2-Agl	116.73 (12)
$\mathrm{N} 1-\mathrm{Ol}-\mathrm{Ag} 1$	95.1 (2)	C66-P2-AgI	108.82 (12)
$\mathrm{O} 1-\mathrm{NI}-\mathrm{O} 2-\mathrm{Agl}$	-1.3(4)	$\mathrm{Pl}-\mathrm{AgI}-\mathrm{P} 2-\mathrm{C} 46$	-179.82 (12)
P2-Ag1-P1-C26	-169.02(12)		

The C atoms of the phenyl rings were refined without any constraints. The H atoms were constrained to parent sites and common isotropic displacement parameters were refined for the H atoms of the same phenyl group [$U_{\mathrm{iso}}=0.036(5)-$ $\left.0.046(6) \AA^{2}\right]$ and for the H atoms of the solvent molecule $\left[U_{\text {iso }}=0.091(16) \AA^{2}\right]$. The strongest peaks (0.63 to $1.253 \mathrm{e}^{-3}$) and the holes deeper than $-0.61 \mathrm{e} \AA^{-3}$ in the final difference Fourier map were situated $0.75-1.29 \AA$ from the Ag^{+}ion.

Data collection: local program. Cell refinement: local program. Data reduction: local program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SHELXL93.

FB thanks Professor Dr C. Kratky, Institute of Physical Chemistry, University of Graz, Austria, for the use of the diffractometer.

[^0]
References

Barron, P. F., Dyason, J. C., Healy, P. C.. Engelhardt, L. M., Skelton. B. W. \& White, A. H. (1986). J. Chem. Soc. Dalton Trans. pp. 1965-1970.
Belaj. F., Trnoska, A. \& Nachbaur, E. (1997). Z. Kristallogr. 212. 355-361.
Ishihara, M.. Ohba. S. \& Saito, Y. (1987). Acta Crrist. B43, 160-164.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Ohba, S.. Matsumoto, F., Ishihara. M. \& Saito. Y. (1986). Acta Cnst. C42, 1-4.
Ohba, S. \& Saito, Y. (1981). Acta Cnst. B37, 1911-1913.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crustal Structures. University of Göttingen, Germany.
Sheldrick. G. M. (1993). SHELXL93. Program for Refinement of Cristal Structures. University of Göttingen. Germany.

Acta Cryst. (1998). C54, 728-732

8-Methylaminoquinolinium Salts of Tetrachlorodimethylstannate(IV) and Tetrachlorodiphenylstannate(IV)

Alan Hazell, ${ }^{a}$ Lian Ee Khoo, ${ }^{b}$ Jexiang Ouyang, ${ }^{b}$ Bernhard J. Rausch ${ }^{a}$ and Zara Miravent Tavares ${ }^{a}$
${ }^{a}$ Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark, and
${ }^{b}$ School of Science, National Institute of Education, 469
Bukit Timah Road, Singapore 259756. E-mail: ach@kemi. aau.dk
(Received 21 October 1997: accepted 9 Januarn 1998)

Abstract

The title compounds, $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$, have been prepared from the reaction of 8-methylaminoquinoline with diorganotin dichlorides. In the methyl compound, the Sn atom is coordinated to two methyl groups, which are trans with respect to each other [Sn-C 2.102 (5) and 2.103 (4) \AA], and to four Cl atoms. $[\mathrm{Sn}-\mathrm{Cl} 2.442(1), 2.461$ (1), 2.894 (1) and 3.098 (1) \AA]. The two long $\mathrm{Sn}-\mathrm{Cl}$ bonds are trans to the short ones and their Cl atoms are hydrogen bonded to the $\mathrm{N}-\mathrm{H}$ groups of the 8 -methylaminoquinolinium cations. The $\mathrm{Sn}-\mathrm{CH}_{3}$ bonds are bent away from the short $\mathrm{Sn}-\mathrm{Cl}$ bonds so that the $\mathrm{CH}_{3}-$ $\mathrm{Sn}-\mathrm{CH}_{3}$ angle is $155.7(2)^{\circ}$. A correlation between the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle and the $\mathrm{Sn}-\mathrm{Cl}$ bond lengths was observed. The anion of the phenyl compound is close to being octahedral and has exact twofold symmetry; the phenyl groups are trans with respect to each other $[\mathrm{Sn}-\mathrm{C} 2.143(2) \AA$] and $\mathrm{Sn}-\mathrm{Cl}$ distances are in the range 2.497 (1)-2.672 (1) \AA. Two Cl atoms are hydrogen bonded to $\mathrm{N}-\mathrm{H}$ groups of the cations.

Fig. 1. The structure and hydrogen bonding for compound (1), with 50% probability ellipsoids for non- H atoms.

Comment

As a continuation of our attempts to coax potentially N, N^{\prime}-bidentate ligands to form adducts with diorganotin dihalides (Hazell et al., 1997), we now report that the reaction of 8-methylaminoquinoline with $R_{2} \mathrm{SnCl}_{2}$ ($R=\mathrm{CH}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{5}$) yielded, instead of adducts, the 8-methylaminoquinolinium salts of tetrachlorodimethylstannate(IV) and tetrachlorodiphenylstannate(IV).

(1) $R=\mathrm{CH}_{3}$
(2) $R=\mathrm{C}_{6} \mathrm{H}_{5}$

In $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$, (1), the Sn atom is coordinated to two methyl groups, which are trans with respect to each other, and four Cl atoms (Fig. 1). There are two short $\mathrm{Sn}-\mathrm{Cl}$ bonds and two very long $\mathrm{Sn}-$ Cl bonds, each of which is trans to a short $\mathrm{Sn}-$ Cl bond; the $\mathrm{Sn}-\mathrm{CH}_{3}$ bonds are bent away from the short $\mathrm{Sn}-\mathrm{Cl}$ bonds. The geometry is intermediate between that expected for a regular $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{4}^{2-}$ anion and that of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{Cl}^{-}$, but is closer to that of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{4}^{2-}$. Comparison with related dimethyltin tetrachlorides shows (Fig. 2) that as the Cl^{-}ions are removed, the remaining $\mathrm{Sn}-\mathrm{Cl}$ bonds get shorter and the $\mathrm{CH}_{3}-\mathrm{Sn}-\mathrm{CH}_{3}$ angle gets narrower, i.e. the diagram shows the reaction path for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{4}^{2-} \rightarrow$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}+2 \mathrm{Cl}^{-}$.

The two N atoms of the 8 -methylaminoquinolinium cation are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to the Cl atoms of the long $\mathrm{Sn}-\mathrm{Cl}$ bonds.
In $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$, (2), the anion is close to being octahedral and has exact twofold symmetry with the phenyl groups trans with respect to each other. The Cll and Cl 2 atoms are both involved in

Fig. 2. $\mathrm{Sn}-\mathrm{Cl}$ distances (\AA) versus the $\mathrm{CH}_{3}-\mathrm{Sn}-\mathrm{CH}_{3}$ angle (${ }^{\circ}$) for $\left(\mathrm{CH}_{3}\right) \mathrm{SnCl}_{4}^{2-}$. Short bonds are represented by open squares, long ones by open circles, and the values for (1) by filled squares and circles [REFCODES (Allen et al., 1991): (a) CEZFES, (b) DERTUP10, (c) DMSNCLO1, (d) FUPTEP. (e) GEKDEF, (f) KUVGOX, (g) PYMCSN, (h) ZEXJOB. (i) ZIKHUWJ.
two $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 3). The shortest $\mathrm{Sn}-\mathrm{Cl}$ bond being that to Cl 3 , which is not involved in hydrogen bonding, while the longest is to Cll , which is trans with respect to the shortest bond. The phenyl rings are twisted so that the angle between the rings is $77.1(2)^{\circ}$. These bond distances and angles are similar to those found in the only other $\mathrm{Ph}_{2} \mathrm{SnCl}_{4}^{2-}$ structure reported, with N -(4-hydroxybenzalidene)-4methoxyanilinium cations (Teoh et al., 1992), in which the anion differs in having a centre of symmetry, so that the phenyl groups are coplanar.

In both 8 -methylaminoquinolinium compounds, the $\mathrm{C}-\mathrm{N}_{s p^{3}}$ bonds of the cations show considerable doublebond character [C-N 1.366 (5) and 1.344 (6) \AA in the methyl compound, and 1.369 (2) \AA in the phenyl compound] and the $\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}$ angles [122.0(4), 123.2 (5) and $120.3(2)^{\circ}$] are all larger than the ideal tetrahedral angle. The $\mathrm{C}-\mathrm{N}$ distances are similar to that

Fig. 3. The structure and hydrogen bonding for compound (2), with 50% probability ellipsoids for non-H atoms. For symmetry operator (i), see Table 5.
in 8 -aminoquinolinium chloride [1.358 (6) \AA], but considerably shorter than that observed when 8 -aminoquinoline is coordinated to tin (Bengtson et al., 1996).

Experimental

8-Methylaminoquinoline was prepared according to the method of Deady \& Yusoff (1976). An equimolar mixture of 8-methylaminoquinoline ($0.4 \mathrm{~g}, 2.5 \mathrm{mmol}$) and dimethyltin dichloride in 6 ml of chloroform was heated to boiling for 5 min on a hotplate. On cooling, 5 ml of petroleum ether (313333 K) was added to the mixture which was then allowed to stand in a freezer for 1 h . A red solid $(0.36 \mathrm{~g}, 47 \%$ yield, m.p. $363-381 \mathrm{~K}$) was isolated from the mixture. Recrystallization of this solid from $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}$ (1:5) yielded needle-shaped red crystals of compound (1) (m.p. 423-427 K) with satisfactory chemical analyses. Adopting the above procedure and using diphenyltin dichloride, compound (2) was obtained in 46% yield (m.p. 431-435 K, satisfactory chemical analyses).

Compound (1)

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$
Mo $K \alpha$ radiation
$M_{r}=608.99$
Monoclinic
$P 2_{1} / n$
$a=7.1020$ (4) \AA
$b=12.7094(6) \AA$
$c=28.213(2) \AA$
$\beta=92.076(1)^{\circ}$ 。
$V=2544.9(2) \AA^{3}$
$Z=4$
$D_{x}=1.589 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Cell parameters from 6627 reflections
$\theta=1.4-29.4^{\circ}$
$\mu=1.441 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate
$0.50 \times 0.30 \times 0.16 \mathrm{~mm}$
Red

Data collection

Siemens SMART CCD
diffractometer
ω rotation scans with narrow frames
Absorption correction:
numerical (XPREP;
Siemens, 1995)
$T_{\text {min }}=0.501, T_{\text {max }}=0.779$
12315 measured reflections

Refinement

Refinement on F
$R=0.034$
$w \cdot R=0.048$
$S=1.324$
4583 reflections
393 parameters
All H atoms refined
$w=1 /\left\{\left[\sigma_{\mathrm{c}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}\right.$
$-|F|\}^{2}$
$(\Delta / \sigma)_{\max }=0.005$

6333 independent reflections
4583 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=29.4^{\circ}$
$h=-9 \rightarrow 9$
$k=0 \rightarrow 17$
$l=0 \rightarrow 38$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.45 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e}^{-3} \\
& \text { Extinction correction: }
\end{aligned}
$$

B-C type 1. Lorentzian isotropic (Becker \& Coppens. 1974)
Extinction coefficient: 63 (12)
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{\prime} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
x	y	こ	$U_{\text {cq }}$
0.11200 (4)	0.23333 (2)	0.35246 (1)	0.0431 (2)
0.27758 (18)	0.10995 (8)	0.302 .31 (4)	0.0673 (7)
0.12579 (17)	0.37799 (8)	0.29468 (3)	0.0602 (6)
$0.09557(16)$	0.06545 (8)	0.42151 (3)	0.0565 (6)
-0.10353 (16)	0.38357 (8)	0.41784 (3)	0.0598 (6)
0.1929 (4)	-0.1469 (2)	0.3722 (1)	$0.040(2)$
0.3245 (5)	-0.1357 (3)	0.4678 (1)	$0.054(2)$
0.1333 (5)	-0.1471 (3)	0.3272 (1)	$0.046(2)$
0.1238 (6)	-0.240 .4 (3)	0.3021 (1)	0.049 (2)

C3	$0.1771(5)$	$-0.3313(3)$	$0.3239(1)$	$0.050(2)$
C4	$0.2414(5)$	$-0.3327(3)$	$0.3716(1)$	$0.042(2)$
C5	$0.2974(6)$	$-0.4250(3)$	$0.3955(2)$	$0.055(2)$
C6	$0.3574(6)$	$-0.4200(3)$	$0.4415(2)$	$0.058(2)$
C7	$0.3664(5)$	$-0.3250(3)$	$0.4663(1)$	$0.052(2)$
C8	$0.3130(5)$	$-0.2302(3)$	$0.4448(1)$	$0.042(2)$
C9	$0.2503(4)$	$-0.2356(3)$	$0.3963(1)$	$0.038(2)$
C10	$0.3742(9)$	$-0.1280(5)$	$0.5178(2)$	$0.070(3)$
N3	$-0.1705(4)$	$0.6214(3)$	$0.4222(1)$	$0.042(2)$
N4	$-0.2837(6)$	$0.5481(3)$	$0.3312(1)$	$0.063(2)$
C11	$-0.1170(5)$	$0.6516(3)$	$0.4654(1)$	$0.048(2)$
C12	$-0.1256(6)$	$0.7551(3)$	$0.4784(2)$	$0.055(2)$
C13	$-0.1915(5)$	$0.8276(4)$	$0.4462(2)$	$0.056(2)$
C14	$-0.2518(5)$	$0.7975(3)$	$0.4002(1)$	$0.048(2)$
C15	$-0.3215(6)$	$0.8703(4)$	$0.3658(2)$	$0.061(3)$
C16	$-0.3779(6)$	$0.8340(4)$	$0.3225(2)$	$0.069(3)$
C17	$-0.3657(6)$	$0.7272(4)$	$0.3100(1)$	$0.061(3)$
C18	$-0.2957(5)$	$0.65(09(3)$	$0.3419(1)$	$0.049(2)$
C19	$-0.2391(4)$	$0.6894(3)$	$0.3880(1)$	$0.041(2)$
C20	$-0.3385(11)$	$0.5055(7)$	$0.2850(2)$	$0 .(1) 5(5)$
C21	$0.3425(7)$	$0.2827(4)$	$0.3958(2)$	$0.057(3)$
C22	$-0.1679(7)$	$0.1867(5)$	$0.3375(2)$	$0.063(3)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (1)

$\mathrm{Sn}-\mathrm{C} 21$	2.103 (4)	$\mathrm{Sn}-\mathrm{Cl} 2$		2.461 (1)
$\mathrm{Sn}-\mathrm{C} 22$	2.102 (5)	$\mathrm{Sn}-\mathrm{Cl} 3$		2.894 (1)
$\mathrm{Sn}-\mathrm{Cll}$	2.442 (1)	$\mathrm{Sn}-\mathrm{Cl} 4$		3.098 (1)
$\mathrm{C} 21-\mathrm{Sn}-\mathrm{C} 22$	155.7 (2)	$\mathrm{Cl} 4-\mathrm{Sn}-\mathrm{C} 21$		82.0 (2)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{C} 22$	100.0 (2)	$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl} 2$		93.70 (4)
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{C} 22$	97.9 (2)	$\mathrm{ClI}-\mathrm{Sn}-\mathrm{Cl} 3$		87.05 (3)
$\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{C} 22$	82.3 (2)	$\mathrm{ClI}-\mathrm{Sn}-\mathrm{Cl} 4$		178.10(5)
$\mathrm{Cl} 4-\mathrm{Sn}-\mathrm{C} 22$	79.0 (2)	$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl} 3$		179.16 (9)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{C} 21$	98.5 (2)	$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{Cl} 4$		88.07 (3)
$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{C} 21$	96.5 (1)	$\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{Cl} 4$		91.19 (3)
$\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{C} 21$	83.0 (1)			
Table 3. Hydrogen-bonding geometry ($\AA,^{\circ}$) for (1)				
D-H. \cdot A	D-H	H...A	D... A	D-H. . A
$\mathrm{NI}-\mathrm{HN} 1 \ldots \mathrm{Cl} 3$	0.83 (4)	2.31 (4)	3.126 (3)	168 (4)
N2-HN2...Cl3	0.78 (4)	2.50 (5)	3.275 (4)	172 (4)
N3-HN3. . Cl4	1.00 (4)	2.09 (4)	3.063 (3)	165 (3)
N4-HN4. . Cl4	0.79 (5)	2.66 (5)	3.429 (4)	167 (5)

Compound (2)

Crystal data
$\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$
$M_{r}=733.13$
Monoclinic
C2/c
$a=13.7689$ (6) \AA
$b=12.0870$
(5) \AA
$c=18.7926$
(8) \AA
$\beta=92.641$ (1)
$V=3124.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.559 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD diffractometer
ω rotation scans with narrow frames
Absorption correction:
numerical (XPREP;
Siemens, 1995)
$T_{\text {min }}=0.680, T_{\text {max }}=0.851$
21740 measured reflections

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 8192
reflections
$\theta=2.1-29.4^{\circ}$
$\mu=1.189 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$

Plate

$0.34 \times 0.34 \times 0.15 \mathrm{~mm}$
Red

4104 independent reflections 3600 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=29^{\circ}$
$h=-18 \rightarrow 18$
$k=0 \rightarrow 15$
$l=0 \rightarrow 26$

Refinement
Refinement on F
$R=0.020$
$w \cdot R=0.033$
$S=1.198$
3600 reflections
252 parameters
All H atoms refined
$w=1 /\left\{\left[\sigma_{\mathrm{c}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}\right.$
$\quad-|F|\}^{2}$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.40 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: B-C type 1, Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: $3.5(4) \times 10^{2}$
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (2)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{l} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Sn	1/2	-0.00667 (1)	3/4	0.0325 (1)
Cl 1	1/2	-0.22776 (4)	3/4	0.0413 (3)
Cl 2	0.53184 (3)	-0.01181(3)	0.88774 (2)	0.0430 (2)
Cl 3	1/2	0.19988 (5)	3/4	0.0538 (3)
N 1	0.3542 (1)	-0.2644 (1)	0.6067 (1)	0.048 (1)
N2	0.5329 (1)	-0.2489 (1)	0.5417 (1)	0.057 (1)
Cl	0.2695 (1)	-0.2631 (2)	0.6380 (1)	0.055 (1)
C2	0.1921 (1)	-0.3250 (2)	$0.6108(1)$	0.055 (1)
C3	0.2045 (1)	-0.3888 (2)	0.5529 (1)	0.054 (1)
C4	0.2938 (1)	-0.3914 (1)	0.5186 (1)	0.046 (1)
C5	0.3094 (2)	-0.4551 (2)	0.4575 (1)	0.064 (1)
C6	0.3970 (2)	-0.4504 (2)	(0.4277 (1)	0.074 (1)
C7	0.4718 (1)	-0.3822 (2)	0.4543(1)	0.062 (1)
C8	0.4613 (1)	-0.3166(1)	0.5134 (1)	0.045 (1)
C9	0.3706 (1)	-0.0.3246(1)	(0.5468 (1)	0.039 (1)
C10	0.6221 (2)	-0.2325 (2)	0.5045 (2)	0.074 (1)
C11	0.6535 (1)	-0.0174 (1)	0.7368 (1)	0.037 (1)
C12	0.6928 (1)	-0.0957 (2)	0.6928 (1)	0.048 (1)
C13	0.7924 (1)	-0.0992 (2)	0.68 .35 (1)	0.067 (1)
C14	0.8528 (2)	-0.0230 (2)	0.7173 (1)	0.075 (2)
C15	0.8152 (1)	0.0553 (2)	$0.7609(1)$	0.068 (1)
C16	0.7154 (1)	(0.0580) (2)	(0.7717(1)	0.050(1)

Table 5. Selected geometric parameters (\AA, ${ }^{\circ}$) for (2)

$\mathrm{Sn}-\mathrm{Cll}$	2.672 (1)	$\mathrm{Sn}-\mathrm{Cl} 3$	2.497 (1)
$\mathrm{Sn}-\mathrm{Cl} 2$	2.606 (1)	$\mathrm{Sn}-\mathrm{Cll}$	2.143 (2)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl} 2$	88.63 (1)	$\mathrm{Cl} 2^{\prime}-\mathrm{Sn}-\mathrm{Cl1}$	90.31 (4)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl} 3$	180	$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl} 3$	91.37 (1)
$\mathrm{Cl1-Sn-Cll}$	86.53 (4)	$\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{Cl1}$	93.47 (4)
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl}^{1}$	177.27 (3)	Cll-Sn-C11	173.05 (8)
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cll}$	89.52 (4)		

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.
Table 6. Hydrogen-bonding geometry (\AA, ${ }^{\circ}$) for (2)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{HN} 1 \cdots \mathrm{Cl1}$	$0.81(2)$	$2.62(2)$	$3.313(1)$	$145(2)$
$\mathrm{N} 1-\mathrm{HN} 1 \cdots \mathrm{Cl} 2^{1}$	$0.81(2)$	$2.87(2)$	$3.432(2)$	$128(2)$
$\mathrm{N} 2 — \mathrm{HN} 2 \cdots \mathrm{Cl}^{1}$	$0.83(2)$	$2.47(2)$	$3.298(2)$	$176(2)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.
The data collection nominally covered a hemisphere of reciprocal space by combining three sets of exposures with $\varphi=0,88$ and 180°. The methyl compound decayed in the beam; however, 93% of the reflections were collected before decay set in, as indicated by scaling of batches of exposures from common reflections, and only these were retained for the refinement.
For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to
solve structures: SIR92 (Altomare et al., 1994) in KRYSTAL (Hazell, 1995); program(s) used to refine structures: modified ORFLS (Busing et al., 1962) in KRYSTAL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) in KRYSTAL; software used to prepare material for publication: KRYSTAL.

We are indebted to Nanyang Technological University (Grants No. RP18/96KLE and RG76/94) and to the Carlsberg Foundation for the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CFI224). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F.. Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla. M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Crvst. 27. 435. Becker, P. J. \& Coppens, P. (1974). Acta Crust. A30. 129-147.
Bengtson, A., Goh. N. K., Hazell, A., Khoo, L. E., Ouyang. J. \& Petersen, K. R. (1996). Acta Chem. Scand. 50, 1020-1024.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Deady, L. W. \& Yusoff, N. I. (1976). J. Heterocycl. Chem. 13. 125126.

Hazell, A. (1995). KRYSTAL. An Integrated System of Cristallographic Programs. Aarhus University, Denmark.
Hazell, A., Thong, K. F., Ouyang, J. \& Khoo, L. E. (1997). Acta Cryst. C53, 1226-1228.
Siemens (1995). SMART, SAINT and XPREP. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Teoh, S.-G., Teoh, S.-B., Yeap, G.-Y. \& Declercy, J.-P. (1992). Polyhedron, 11, 2351-2356.

Acta Cryst. (1998). C54, 732-734

Bis(di-2-pyridylmethanediol- $N, 0, N^{\prime}$)copper(II) Diperchlorate

Guang Yang, ${ }^{a}$ Ming-Liang Tong, ${ }^{\text {a }}$ Xiao-Ming Chen ${ }^{a}$ and Seik Weng Ng^{b}
${ }^{a}$ Department of Chemistry, Zhongshan University, Guangzhou 510275, People's Republic of China, and ${ }^{b}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: cedc03@zsu.edu.cn

(Received 3 November 1997; accepted 6 January 1998)

Abstract

Di-2-pyridyl ketone reacts with diaquatetrakis(betaine)dicopper tetraperchlorate in water to form centrosymmetric bis(di-2-pyridylmethanediol) copper(II) diper-

chlorate, $\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, whose metal atom is N, O, N^{\prime}-chelated by the two di-2-pyridylmethanediol ligands in an elongated octahedral $\mathrm{CuN}_{4} \mathrm{O}_{2}$ geometry. The hydroxyl groups are hydrogen bonded to the perchlorate anion.

Comment

Di-2-pyridyl ketone (hereafter DPK) functions either as a bidentate N, N^{\prime}-donor or as a tridentate N, O, N^{\prime}-donor towards metal ions, depending on the reaction medium used in the synthesis of the complexes (Deveson et al., 1996), and several mononuclear and polynuclear transition metal-DPK complexes have been reported (Wang et al., 1986; Sommerer et al., 1993). The ligand undergoes alcoholysis to the acetal, $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{C}(\mathrm{OR})(\mathrm{OH})\right](R=$ alkyl), whose existence has been documented through its metal complexes (Bayers et al., 1985; Baggio et al., 1993; Papadopoulos et al., 1996; Tangoulis et al., 1996). The $\left[\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{C}(\mathrm{OH})_{2}\right]$ homologue is trapped in the title complex, (I), which was obtained in the attempt to prepare a copper-DPK-betaine complex.

(I)

The title complex consists of bis(di-2-pyridylmethanediol)copper(II) cations and perchlorate anions. The $\mathrm{Cu}^{\mathrm{II}}$ atom, which is located at an inversion centre, is chelated by the N, O and N^{\prime} atoms of the ligand, being surrounded by four N and two O atoms in an elongated octahedral $\mathrm{CuN}_{4} \mathrm{O}_{2}$ environment. The distortion arises from the deviation of the $\mathrm{N} 1-\mathrm{Cul-N} 2$ [88.2(1) ${ }^{\circ}$] and $\mathrm{Ol}-\mathrm{Cul}-\mathrm{N} 1\left[74.7(1)^{\circ}\right.$] angles from the idealized 90° value. The $\mathrm{Cu}-\mathrm{N}$ bond lengths [2.009 (2) and $2.010(2) \AA$] are similar to those [1.994 (5)-2.098 (5) A $]$ found in the di-2-pyridyl ketal complexes of nickel(II) and copper(II) (Wang et al., 1986).

The title complex is structurally different from bis-(di-2-pyridyl-1-hydroxymethoxy)cobalt(III) perchlorate trihydrate, where the $\mathrm{Co}{ }^{\mathrm{III}}$ atom is coordinated by a pair of the tridentate ligands, with the two $\mathrm{Co}-\mathrm{O}$ bonds in a cis arrangement (Tong et al., 1998). In contrast, in the present case, the two $\mathrm{Cu}-\mathrm{O}$ bonds [2.454 (2) \AA], being in a trans arrangement, significantly exceed the $\mathrm{Cu}-\mathrm{N}$ bond distances, a feature which can be attributed to the Jahn-Teller effect, which usually manifests itself in d^{9} metal systems. The hydroxyl groups are both involved as donors in hydrogen bonds with the perchlorate anion (Table 2).

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1123). Services for accessing these data are described at the back of the journal.

